

Photos: SB Rood

Reconnecting Channels and Floodplains: Approaches and Responses

Brian Bledsoe

Department of Civil and Environmental Engineering, Graduate Degree Program in

Outline

Definitions

- Benefits of floodplain connectivity
- Disconnected floodplains
- Approaches to floodplain reconnection
- Responses a few quick case studies
 Final thoughts

Floodplain

A geomorphic feature that is:

- periodically inundated by water from an adjacent river or stream; and
- formed and influenced by streamflows and alluvial sediments upon which ecosystems develop and operate.

Connected (Functional) Floodplain

- Exchanges flow, sediment, nutrients, and organisms with its adjacent river.
- Interacts with a river flow regime with sufficient variability to provide the flow levels and events that support important floodplain processes.

Sufficient spatial scale to allow important dynamic processes to occur and for benefits to accrue to a meaningful level.

Benefits of Connected Floodplains

Floodplain Riparian Zones

Filtering of nutrients & fine sediment, biodiversity, productivity, shading, bank stabilization, source wood & carbon, food web support, habitat, wildlife corridor, recreation, aesthetics...

Floodplain Functions

Hydrology and Sediment Dynamics

- Stores surface water
- Maintains a high water table
- Accumulates and transports sediments

Biogeochemistry and Nutrient Cycling

- Transforms and immobilizes pollutants
- Produces organic carbon
- Contributes to overall biodiversity
- Sequesters carbon in soil

Floodplain Functions

Habitat and Food Web Maintenance

- Maintains floodplain vegetation
- Biodiversity
- Shading / temperature moderation
- Mosaic of habitats
- Wildlife corridors
- Supports characteristic terrestrial and aquatic vertebrate populations
 Don't forget recreation and aesthetics

Disconnected Floodplains

Some Causes of Lateral Disconnection Flow alteration / extraction Incision / channel enlargement Channelization > Fill material, e.g. drainage, post-settlement alluvium Levees Armoring and riprap Other legacy effects

Big Lost River, ID Rood et al. (2005)

INCISED CHANNEL EVOLUTION PHASES

Walla Walla River Levees

National Flood Damage per Capita (1934-2000)

Approaches to Floodplain Reconnection

What are we connecting?

Just add water?

- Overbank vs. hillslope vs. groundwater inputs
- Hyporheic zone
- Geomorphic connections
 - Lateral migration for plains cottonwood recruitment
 - Access to floodplain sediments
- Plant communities water table, topsoil, seed source connections
- > Wildlife, human connections

Riparian buffers Allow channel evolution Remove / setback levees, riprap Bank lowering In-stream structures Channel blocking Liner to raise water table "Perched" re-construction Pond and plug Sediment removal and re-construction

^{>hysical impact on existing system?}

Approaches

- Bring the water to the floodplain e.g., environmental flows, structures, levee setbacks
- Bring the floodplain to the water e.g., channel downscaling / miniaturization, floodplain lowering
- Incised channels
 - perched re-construction
 - 2-stage channels
 - bank lowering
 - passive approaches channel evolution

Constraints

- > Available high flow regime
 - Magnitude, frequency, timing, duration
- Available space for dynamic channel
 - Lateral
 - Longitudinal
- Soils
 - Hydraulic conductivity of legacy sediments or fill materials
- Seed source native vs. non-native species
- Potential for succession, self-organization

Key considerations

- The inflows of water to the floodplain and understand the physical and geologic controls on these processes.
 - e.g., the relative importance of overbank flow versus hillslope runoff tends to increase with stream order.

Water, soil and germination requirements of floodplain vegetation communities being targeted.

Recruitment **Dov Modal** Click to edit Master text sty Second level Third level Fourth level Fifth level

Photos: David Merritt

Soil-Water-Plant Relations by Soil and Elevation

Elevation required by plants due to capillary fringe

Floodplain plant response at elevational scales on the order of 10 cm

		Mean	Elevational Increment															
Species	Ν	Elevation	2.46	2.6	1	2.7	2.76		2	3.07		3.37	3.37 3.68		4.14		4.5	59
Taxodium distichum	45	2.72 ± 0.12	24 77	12.4	42			3	16									
Fraxinus caroliniana	121	2.74 ± 0.09	44 5	5 32	5	16	2	4	1									
Ulmus americana	3	2.81 ± 0.01				1	1											
Quercus laurifolia	3	2.83 ± 0.10		1	0	1	1											
Nyssa aquatica	36	2.83 ± 0.17	9 18	3 7 1	11	5	7	5	10	2	7	1 3	3					
Fraxinus pennsylvanica	20	2.89 ± 0.18		3	9	3	17	3 :	21	3 :	28							
Leucothoe racemosa	22	2.92 ± 0.30		6	0	2	0			2	0	1 (0 1	1 0				
Ligustrum sinense	2	2.95 ± 0.18				0	0	1	0									
Acer rubrum	305	3.04 ± 0.44	18 1	30 1	17	43	18	45 :	22	37 :	23	19 12	2 23	3 26	8	4	9	0
Carpinus caroliniana	4	3.07 ± 0.12						3	0	2	0							
Liquidambar styraciflua	70	3.16 ± 0.62		4	7	9	8	11	10	11	21	9 13	8 3	5 18	3	3	4	0
Cyrilla racemiflora	20	3.22 ± 0.41		1	0	2	0	3	0	2	0	7 () 4	4 0				
Nyssa sylvatica var. biflora	49	3.24 ± 0.53		3 1	10	6	26	5	20	4	18	17.6	7 1	1.12	7	0	2	0
Itea virginica	6	3.31 ± 0.24						3	0			6 ()					
Clethra alnifolia	37	3.43 ± 0.50	3 0) 1	0	3	0			2	0	12 (0 10	5 0	2	0		
Ilex opaca	78	3.53 ± 0.77		1	0	3	0	10	0	30	3	12 ()		15	2	13	2
Magnolia virginiana	11	3.64 ± 0.62		1	0					2	0		-	51	- 5	0		
Persea borbonia	31	3.69 ± 0.43				0	0	4	0	2	0	10 (0 13	3 0	10	2		
Quercus nigra	5	3.95 ± 0.25										1 () (2-14	3	1		
Vaccinium spp.	13	4.08 ± 0.46										1 () 8	8 0	2	0	6	0
Quercus michauxii	7	4.14 ± 0.65								3	0	2		2			6	27
Liriodendron tulipifera	11	4.37 ± 0.49												5 25	7	24	6	49
Leucothoe axillaris	2	4.39 ± 0.19													3	0		
Hamamelis virginiana	- 5	4.46 ± 0.10													7	0	2	0
Pinus taeda	5	4.64 ± 0.28													- 5	63	4	13
Symplocos tinctoria	35	4.69 ± 0.77											12	2 0	16	0	28	0
Oxydendrum arboreum	13	5.09 ± 0.86													8	0	15	1
Cornus florida	2	5.44 ± 0.02															4	0
% annual flooding frequency:			61	- 29	9		7	1		<0	.1	0		0		0	(0
% growing season flooding frequency:			56	27	7		8	1	L	<0	.1	0		0		0		0
number observed in increment:			34	180	0	28	9	73	3	122	2	69		82	6	1	5	4
species richness:			6	13	3	1	5	13	3	13	5	13		13	1	5	14	4

Seven essential requirements

- Streamflows needed
- Geomorphic processes needed
- Water table—soil interactions needed
- Regeneration sites needed
- Propagation materials needed
- Safety
- Landowner / stakeholder support

Responses / Case Studies

Trout Creek – near Lake Tahoe

Gain in streamflow (Qrel) = (Downstream Q – Upstream Q) / Upstream Q

Moorhead et al. (2008)

Montane Meadow, Northern California

Improvements in water tables, vegetation but late season baseflows decreased→ additional storage and ET

> Hammersmark et al. (2008)

Truckee River, CA

Truckee River California 1977 vs. 1997 - Rood et al. (2005)

Post Settlement Alluvium Southeast USA

Photo credits: Ben Mater

Channel Blocking (Biohabitats Inc.)

After

V. Sortman (Biohabitats Inc.)

Bank Lowering

"Perched" Re-construction

Incresed hyporheic exchange? Is it possible?

Floodplain moisture/base flow? How to raise water Vertical stability ensured? Proper grade control measures? Migration anticipated?

Removal & Re-construction: Slabcamp Cr.

- Closest to "restoration"?
- · Challenges to consider:
- · Existing vegetation removed
- · Sediment splay area needed
- Tributary tie-ins...
- Initial embeddedness

Perched Re-construction: Mill-Branch KY (UofL)

Partial removal

Groundwater Dam

Gravel Aquifer

Compacted Core

Camp Hale – Eagle River, CO

Current State

Ten Mile Creek – Copper Mtn. Photos: Justin Anderson USFS

Little Snake River at 3 Forks Ranch – near Slater, WY

Cache La Poudre River Fort Collins, CO

Assessing Opportunities for Reconnecting Urban Floodplains

Characteristic s of Rip Rap

- Length
- Distance from Centerline

Surrounding Topography

 Adjacent floodplain

Fundamental Constraints

- Buildings
- Infrastructure

Final thoughts

Floodplain ecosystems are dependent upon naturally dynamic river-flow patterns and occasional floods

For some degraded rivers, the recovery of appropriate seasonal flow patterns has lead to dramatic improvements in floodplain forests

Final thoughts

- Floodplain reconnection is context-specific
- Requires clear goals and objectives
- Must work with available flows, space
- Plants, hydrology, soils have subtle interrelationships operating at small scales
- Focus on getting moisture regime and soils right -> plants self-organize
- Prioritize for extent of lateral and longitudinal connectivity

With Careful Design Floodplain Reconnection Can Reduce flood risks

Increase ecosystem goods and services, and ecological functions, e.g.

- Water quality
- Habitat, fisheries, wildlife

Improve resiliency to the potential effects of climate change

Hydrologic effect	Cause
Raised GW levels	Reduced energy gradient on GW flow
Increased subsurface storage in the rooting zone	Reduced energy gradient on GW flow
Increased frequency of floodplain inundation	Channel capacity reduced, flow reaches floodplain at lower flow levels
Decreased flood peaks	Overbank flows temporarily stored on floodplain
Increased surface storage	Microtopography, depression storage
Decreased duration of baseflow	Reduced gradient, GW flow slow Increased ET many times > GW flux
Increased ET	Plants now have access in root zone
Decreased total annual runoff	Increased subsurface storage and ET